A Data-Driven Investigation and Estimation of Optimal Topologies under Variable Loading Configurations

نویسندگان

  • Erva Ulu
  • Rusheng Zhang
  • Mehmet Ersin Yümer
  • Levent Burak Kara
چکیده

We explore the feasibility and performance of a data-driven approach to topology optimization problems involving structural mechanics. Our approach takes as input a set of images representing optimal 2-D topologies, each resulting from a random loading configuration applied to a common boundary support condition. These images represented in a high dimensional feature space are projected into a lower dimensional space using component analysis. Using the resulting components, a mapping between the loading configurations and the optimal topologies is learned. From this mapping, we estimate the optimal topologies for novel loading configurations. The results indicate that when there is an underlying structure in the set of existing solutions, the proposed method can successfully predict the optimal topologies in novel loading configurations. In addition, the topologies predicted by the proposed method can be used as effective initial conditions for conventional topology optimization routines, resulting in substantial performance gains. We discuss the advantages and limitations of the presented approach and show its performance on a number of examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی عددی دال‌های بتنی مسلح شده به ورق‌های حفره‌دار فولادی تحت بارگذاری انفجار

This paper aims to study the numerical behavior of concrete slabs reinforced with perforated steel plates (PSPs) through nonlinear finite element (FE) analysis performed by ABAQUS. In this regard, conventional steel rebars (CSRs) are replaced with (PSPs) in the concrete slabs. Due to the particular geometry that the configuration of the hole provides, these PSPs are more integrated with surroun...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Estimating the costs of software development is one of the most important activities in software project management. Inaccuracies in such estimates may cause irreparable loss. A low estimate of the cost of projects will result in failure on delivery on time and indicates the inefficiency of the software development team. On the other hand, high estimates of resources and costs for a project wil...

متن کامل

Nusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)

In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...

متن کامل

Prediction of potential habitat distribution of Artemisia sieberi Besser using data-driven methods in Poshtkouh rangelands of Yazd province

The present study aimed to model potential habitat distribution of A. sieberi, and its ecological requirements using generalized additive model (GAM) and classification and regression tree (CART) in in the Poshtkouh rangelands of Yazd province. For this purpose, pure habitats of the species was delineated and the species presence data was recorded by the systematic-randomize sampling method. Us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014